The Kindest Cut: Young Forest as Critical Bird Habitat

Scott Stoleson USDA Forest Service Northern Research Station

Irvine, PA scott.h.stoleson@usda.gov

What I'll talk about

- What is "young forest" from wildlifes' perspective?
- Early-successional birds as YF habitat specialists
 Population trends
- Late-successional birds as YF habitat specialists (?!?)
 - Seasonal habitat shifts
 - Condition consequences of habitat choice
- Conclusion: young forest critical for birds

What do we mean by "Young Forest"?

Sources of Young Forest in the Northeast (PA)

- Abandoned beaver dams (very little!)
- Abandoned farms (33 k ac/yr)
- Severe weather & wildfire (e.g., tornados) (23 k ac/yr)

•Timber Harvest (213 k ac/yr)

Source: USDA Forest Service. 2020. Forests of Pennsylvania, 2019. Resource Update FS-251. Madison, WI: U.S. Department of Agriculture, Forest Service.

Why should we care about Young Forest?

Area in young forest in Pennsylvania by year

Why should we care about Young Forest?

- We're losing it (not just in PA)!
- Most young forest is ephemeral (*it grows up so fast*!), so needs to be created constantly
- Reflects changes in forestry, farming practices
- Provides critical habitat for <u>many</u> wildlife species

Population trends of bird guilds

based on BBS data 1966-2014

Young Forest Birds

- Most threatened suite of birds based on BBS-based population trends (*if we ignore grassland birds, anyway*)
- Habitat specialists in structure, composition, and time
- One size does <u>not</u> fit all, habitat-wise (and therefore management-wise)

Young Forest birds as habitat specialists

Early Successional Birds

Species	Years after cut				
	1 st	Common	Decline		
	appear				
Northern Flicker	1	1	7-10		
Eastern Bluebird	1	1	2		
Alder Flycatcher	1	2	5-7		
Chestnut-sided Warbler	2	4	10		
Mourning Warbler	2	5	10		
Rose-breasted Grosbeak	3	15	-		
Veery	3	10	20		
Canada Warbler	5	15	-		

From DeGraaf & Yamasaki, 2003 FEM 185:179-191

"Early successional" birds include a diverse group of habitat specialists with different habitat needs,

plus some generalist species

Young forests consist of combinations of 3 different vegetation components:

- 1. Herbaceous plants
- 2. Shrubby plants (including *Rubus* canes and tree seedlings)
- 3. Mature trees (residuals or on edges)

But species differ in their habitat specificity!

 For instance: Mourning Warblers require large patches (>3 ac) of young regen dominated by Rubus, preferably 6-9 yrs old, but within a forested landscape.

But species differ in their habitat specificity!

See Bolton talk @ 1:00

See Williams talk @ 9:20!

Some species use different components at different times during the day

See talk by Larkin the Younger @ 1:40

So what makes good YF breeding habitat?

- Obviously, depends on the bird species!
- Must consider all vegetative components
 - Area of each
 - Spatial arrangement of total
- Ecologically relevant scale: note that breeding birds are territorial!
 - Limits utility of group selection for breeding birds
 - See Larkin (the Elder) talk @ 11:30

Late successional birds as early successional specialists?

Concern over suite of birds breeding in *mature* deciduous forests, usually referred to as:

- Forest-interior species,
- Late-successional species, or
- Mature forest species

Some forest-interior species in PA

Black-throated Blue Warbler

Why the concern over forest birds?

Populations of many are declining across North America

Research has identified problems in:

- Breeding season
 - Fragmentation => increases in nest predation, brood parasitism; loss of habitat for area-sensitive spp.
- Wintering grounds
 - Habitat destruction & degradation
- Migration
 - Loss of critical stop-over habitat

Little attention to post-breeding season

Birds spend only a portion of their time on the summering grounds actually breeding

- Critical time for migratory birds:
 - Young become independent, learn vital survival skills (e.g., foraging, predator avoidance)

- Critical time for migratory birds:
 - Young become independent, learn vital survival skills (e.g., foraging, predator avoidance)
 - Adults grow new feathers (molt) prior to migration

- Critical time for migratory birds:
 - Young become independent, learn vital survival skills (e.g., foraging, predator avoidance)
 - Adults grow new feathers (molt) prior to migration
 - Adults and young accumulate fat as fuel just prior to and in migration

- Critical time for migratory birds:
 - Young become independent, learn vital survival skills (e.g., foraging, predator avoidance)
 - Adults grow new feathers (molt) prior to migration
 - Adults and young accumulate fat as fuel just prior to and in migration
- Little studied (because it's difficult!)

Evidence of habitat shifts: Radio-tagging

- Follow radio-tagged young birds (Wood Thrush, Ovenbird)
- After leaving natal territory, young settle disproportionately in early successional habitats
- Sources: Anders & Faaborg 1998 Auk; Vega-Rivera & Rappole 1998 Condor; King et al. 2006 J. Zool.; Dellinger 2007 MS Thesis

Wood thrush fledgling with radio collar Photo by T. Dellinger

Evidence of habitat shifts: Mist nets

- Forest-interior species begin appearing in nets in clearcuts midsummer
- Can become among most abundant species caught in clearcuts
- Sources: Rappole & Ballard 1987 Wilson Bull.; Pagen et al. 2000 Condor; Marshall et al. 2003 FEM; Vitz & Rodewald 2006 Biol. Cons.; Stoleson 2013 Auk.

Question remaining

Do mature forest birds use young forest habitats disproportionately?

- vs. more abundant in mature forest (e.g., if just passing through between mature forest patches)
- vs. being randomly distributed across landscape (equal abundance in young vs. mature forest)

Study Goals

Compare usage of regenerating clearcuts and mature forest understory by birds

- in relation to species and guild (i.e., forest interior vs. others)

 Assess physiological condition of birds caught to determine whether use of clearcuts carries fitness costs or benefits

Methods

- Constant-effort mist-netting
 - 4 nets each in regenerating clearcut, forest interior with substantial understory - simultaneous netting corrects for day-to-day variation in captures
 - -Nets run daily 6 hrs starting 20 min. before dawn
 - Each site run for 1 week at a time, weather permitting, rotated among 3 sites/yr July through Sept.
 - -4 sites used in total from 2005 2008

Study site layout

Net setup

Bird data collected

- Wing length (unflattened)
- Tail length
- Weight
- Sex
- Age class

All birds banded with USGS numbered aluminum band

Condition measures

- Molt scored on scale of 0-5 for body, wing, tail (newer = higher)
- Fat score 0-3
- Presence of ectoparasites noted
- Calculated Body Condition Index:
 - Weight-size residuals, like human
 BMI

Results: Summary stats

- 10,616 net-hrs total: 5514 in cuts, 5102 in forest
- **3846 birds** captured & banded, of 84 species
 - Ave. capture rate of 36.2 birds/100 net-hrs
- Of those, 237 in breeding condition, 2030 post-breeding, & 1578 apparent migrants
- Of post-breeding birds, 605 were forest generalists, 514 were forestinterior specialists

Capture rates post-breeding

Forest birds were significantly more abundant in clearcuts than in forest interiors in the post-breeding season

So, we can compare capture rates only for species of forest understory and ground

Understory species

But might we be missing

- David King, NRS-Amherst, MA, conducted similar study
- Did point counts from ground and in canopy w/ deer stands
- Found ground counts NOT biased
- Really, there are few birds in mature forest at this time!

Did habitat use affect measures of condition?

Fat in post-breeding birds

Slightly but significantly more birds captured in cuts had some fat than did birds captured in forest

Molt progression

Black-throated Blue Warblers

Red arrows = new feathers, yellow arrows = old feathers Male (left) has multiple tracks of new, while female (right) has just 2: So male further progressed in molt

Molt progression

But statistically...

Variable	Model	K	Log-likelihood	AIC	ΔΑΙϹ	Wi
Molt Score						
Age + sex +	habitat×species + date + yr	6	6351.25	6363.25	0.00	0.99

Method: Information-theoretic model selection process, using general linear mixed models (SAS PROC GLIMMIX), with a Gamma distribution and log link function, the restricted maximum-likelihood (REML) method and the Kenward-Roger procedure to adjust denominator degrees of freedom.

What this means: When corrected for species, age, sex, and date, the habitat a bird was caught in (forest or cut) was strongly correlated with how advanced its molt was – further in cuts.

Ectoparasites: post-breeding

Birds caught in clearcuts were significantly <u>less</u> likely to have parasites than those in forest interiors

Why?

Why do birds use young forest so much??

Birds' needs:

- Food
- Shelter

Shelter in young forests

- They're thickets!!
- Many early-successional plants are *thorny*, making rather effective predator deterrent

Food in young forests

- Most early successional species spiny so few chemical defenses: many tasty insects!
- By 6 yrs post-harvest, total leaf volume equivalent to mature forest (Keller et al. 2003) : lots of bugs in small space!
- Pin cherry has highest biomass of insects/leaf area of local trees
- Many ES plants produce fruit (*Rubus, Aralia, Smilax*...)

So, young forests create smorgasboard for birds!

Results Summary

- Regenerating clearcuts are used disproportionately by (most) forest-interior species in the post-breeding season
- Birds appear to *increase* fitness by using cuts, relative to those remaining in forest

Management Implications

- Some early successional habitat within large forest tracts may be *necessary* to sustain some forest-interior bird species
- Area in early successional habitat in NE at lowest point since records kept
 - -might this be a stressor affecting mature forest birds?

Conclusions

- Early successional habitat vital for early-successional birds
- Early successional habitat may be vital for many mature-forest birds in the post-breeding season
- Therefore, early successional habitat critical for songbirds!

Thank you

